题目内容
【题目】如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠PAB=∠PBC,则线段CP的最小值是_______.
【答案】﹣4.
【解析】
连接OC与圆O交于点P,先证明点P在以AB为直径的圆O上,再利用勾股定理求出OC即可.
∵∠ABC=90°,
∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴OP=OA=OB(直角三角形斜边中线等于斜边一半),
∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,
∵在矩形ABCD中,AB=8,BC=5,
在RT△BCO中,∵∠OBC=90°,BC=5,OB=4,
∴OC=,
∴PC=OC﹣OP=﹣4.
∴PC最小值为﹣4.
故答案为:﹣4.
练习册系列答案
相关题目