题目内容
【题目】如图,一块四边形的纸板剪去△DEC,得到四边形ABCE,测得∠BAE =∠BCE=90°,BC=CE,AB=DE.
(1)能否在四边形纸板上只剪一刀,使剪下的三角形与△DEC全等?请说明理由;
(2)求∠D的度数.
【答案】(1)见解析(2)45°.
【解析】
(1)连接AC, 利用全等三角形的判定方法(SAS)进而判断得出答案.
(2)由第(1)△ABC≌△DEC,可得AC=DC, ∠ACB=∠DCE,根据∠BCE=90°, ∠ACB+∠ACE=∠BCE, ∠ACB=∠DCE,∠DCE+∠ACE=∠ACB+∠ACE=∠BCE=90°,
可得∠ACD=90°,继而可得△ADC是等腰直角三角形.
沿AC剪一刀.
理由:∵∠BAE=∠BCE=90°,
∴∠ABC+∠AEC=180°,
∵∠AEC+∠DEC=180°,
∴∠DEC=∠B,
在△ABC和△DEC中,
AB=DE,∠B=∠EDC, BC=EC,
∴△ABC≌△DEC(SAS).
(2)∵△ABC≌△DEC,
∴AC=DC, ∠ACB=∠DCE,
∵∠BCE=90°, ∠ACB+∠ACE=∠BCE, ∠ACB=∠DCE,
∴∠DCE+∠ACE=∠ACB+∠ACE=∠BCE=90°,
∴∠ACD=90°,
∵AC=DC,
∴∠D=45°.
练习册系列答案
相关题目