题目内容

如图,对称轴为直线x=
7
2
的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
(1)因为抛物线的对称轴是x=
7
2

设解析式为y=a(x-
7
2
2+k.
把A,B两点坐标代入上式,得
a(6-
7
2
)2+k=0
a(0-
7
2
)2+k=4

解得a=
2
3
,k=-
25
6

故抛物线解析式为y=
2
3
(x-
7
2
2-
25
6
,顶点为(
7
2
,-
25
6
).

(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=
2
3
(x-
7
2
2-
25
6

∴y<0,
即-y>0,-y表示点E到OA的距离.
∵OA是OEAF的对角线,
∴S=2S△OAE=2×
1
2
×OA•|y|=-6y=-4(x-
7
2
2+25.
因为抛物线与x轴的两个交点是(1,0)和(6,0),
所以自变量x的取值范围是1<x<6.
①根据题意,当S=24时,即-4(x-
7
2
2+25=24.
化简,得(x-
7
2
2=
1
4

解得x1=3,x2=4.
故所求的点E有两个,
分别为E1(3,-4),E2(4,-4),
点E1(3,-4)满足OE=AE,
所以平行四边形OEAF是菱形;
点E2(4,-4)不满足OE=AE,
所以平行四边形OEAF不是菱形;
②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,
此时点E的坐标只能是(3,-3),
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使平行四边形OEAF为正方形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网