题目内容
【题目】如图,∠A=∠B=50°,P 为 AB 中点,点 M 为射线 AC 上(不与点 A 重合)的任意一点,连接 MP, 并使MP 的延长线交射线BD 于点N,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当 MN=2BN 时,求α的度数;
(3)若△BPN 为锐角三角形时,直接写出α的取值范围.
【答案】(1)证明见解析;(2)α=∠B=50°;(3)40°<α<90°.
【解析】
根据AAS可证明△APM≌△BPN.
由(1)中的全等得MN=2PN,所以BN=PN,由等边对等角可得结论.
三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形内部,只有锐角三角形的外心在三角形的内部,所以根据题目中要求可知:△BPN是锐角三角形,由三角形的内角和可得结论.
(1)∵P是AB的中点,
∴PA=PB,
在△APM和△BPN中,
∵,
∴△APM≌△BPN(ASA);
(2)由(1)得:△APM≌△BPN,
∴PM=PN,
∴MN=2PN,
∵MN=2BN,
∴BN=PN,
∴α=∠B=50°;
(3)∵△BPN是锐角三角形,
∵∠B=50°,
∴40°<∠BPN<90°,即40°<α<90°.
练习册系列答案
相关题目