题目内容
【题目】已知函数y=4x2﹣4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),且(x1+x2)(4x12﹣5x1﹣x2)=8,则该函数的最小值为( )
A. 2 B. ﹣2 C. 10 D. ﹣10
【答案】D
【解析】
根据抛物线与x轴的交点问题得到x1与x2是4x2-4x+m=0的两根,由一元二次方程的解得4x12-4x1+m=0,由根与系数的关系得到x1+x2=1,x1x2=,则4x12=4x1-m,接着由(x1+x2)(4x12-5x1-x2)=8得到(x1+x2)(-m-x1-x2)=8,则1(-m-1)=8,解得m=-9,所以抛物线解析式为y=4x2-4x-9,然后根据二次函数的性质求函数的最小值.
∵函数y=4x2-4x+m的图象与x轴的交点坐标为(x1,0),(x2,0),
∴x1与x2是4x2-4x+m=0的两根,
∴4x12-4x1+m=0,x1+x2=1,x1x2=,
∴4x12=4x1-m,
∵(x1+x2)(4x12-5x1-x2)=8,
∴(x1+x2)(4x1-m-5x1-x2)=8,
即(x1+x2)(-m-x1-x2)=8,
∴1(-m-1)=8,解得m=-9,
∴抛物线解析式为y=4x2-4x-9,
∵y=4(x-)2-10,
∴该函数的最小值为-10.
故选D.
练习册系列答案
相关题目