题目内容

【题目】在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点

(1)如图1,求∠DAO的大小及线段DE的长;
(2)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3
①如图2,当点G在点H的左侧时,求GH,DG的长;
②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).

【答案】
(1)解:∵A(﹣2,0),D(0,2

∴AO=2,DO=2

∴tan∠DAO= =

∴∠DAO=60°,

∴∠ADO=30°,

∴AD=2AO=4,

∵点E为线段AD中点,

∴DE=2;


(2)解:①如图2,

过点E作EM⊥CD,

∴CD∥AB,

∴∠EDM=∠DAB=60°,

∴EM=DEsin60°=

∴GH=6,

∵CD∥AB,

∴∠DGE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,

∴△OEF′≌△OEF,

∴∠OFE=∠OF′E,

∵点E是AD的中点,

∴OE= AD=AE,

∵∠EAO=60°,

∴△EAO是等边三角形,

∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,

∴∠EOF′=∠EOA=60°,

∴∠EOF′=∠AEO,

∴AD∥OF′,

∴∠OF′E=∠DEH,

∴∠DEH=∠DGE,

∵∠DEH=∠EDG,

∴△DHE∽△DEG,

∴DE2=DG×DH,

设DG=x,则DH=x+6,

∴4=x(x+6),

∴x1=﹣3+ ,x2=﹣3﹣

∴DG=﹣3+

②如图3,

过点E作EM⊥CD,

∴CD∥AB,

∴∠EDM=∠DAB=60°,

∴EM=DEsin60°=

∴GH=6,

∵CD∥AB,

∴∠DHE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,

∴△OEF′≌△OEF,

∴∠OFE=∠OF′E,

∵点E是AD的中点,

∴OE= AD=AE,

∵∠EAO=60°,

∴△EAO是等边三角形,

∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,

∴∠EOF′=∠EOA=60°,

∴∠EOF′=∠AEO,

∴AD∥OF′,

∴∠OF′E=∠DEH,

∴∠DEG=∠DHE,

∵∠DEG=∠EDH,

∴△DGE∽△DEH,

∴DE2=DG×DH,

设DH=x,则DG=x+6,

∴4=x(x+6),

∴x1=﹣3+ ,x2=﹣3﹣

∴DH=﹣3+

∴DG=3+

∴DG=AF=3+

∴OF=5+

∴F(﹣5﹣ ,0)


【解析】(1)根据点A的坐,点D的坐标,在Rt△AOD中,利用解直角三角形易求出结论。
(2)①由(1)可知∠DAO=60°,添加辅助线,过点E作EM⊥CD,利用解直角三角形可求出EM、GH的长,根据已知易证明△OEF′≌△OEF,可得出角相等,点E是AD的中点,易得到△EAO是等边三角形,再证明△DHE∽△DEG,得出对应边成比例,设DG=x,则DH=x+6,建立方程,求出方程的解即可;②要求点F的坐标,就需求OF的长,解法与①类似求出DG,DG=AF,即可求出OF的长,从而求出点F的坐标。

【考点精析】通过灵活运用平行四边形的性质和相似三角形的判定与性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网