题目内容
(2011•西双版纳)下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有
1+3n
1+3n
_个★.分析:把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式即可;
解答:解:观察发现,第1个图形五角星的个数是,1+3=4,
第2个图形五角星的个数是,1+3×2=7,
第3个图形五角星的个数是,1+3×3=10,
第4个图形五角星的个数是,1+3×4=13,
…
依此类推,第n个图形五角星的个数是,1+3×n=1+3n;
故答案为:1+3n.
第2个图形五角星的个数是,1+3×2=7,
第3个图形五角星的个数是,1+3×3=10,
第4个图形五角星的个数是,1+3×4=13,
…
依此类推,第n个图形五角星的个数是,1+3×n=1+3n;
故答案为:1+3n.
点评:本题考查了图形变化规律的问题,把五角星分成两部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.
练习册系列答案
相关题目