题目内容
如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.
(1)求证:CG=CE;
(2)若正方形边长为4,求菱形BDFE的面积.
解:连接DE,则DE⊥BF,
∵∠ODG+∠OGD=90°,∠CBG+∠CGB=90°,∠CGB=∠OGD
∴∠CDE=∠CBG,
又∵BC=DC,∠BCG=∠DCE,
∴△BCG≌△DCE(ASA),
∴CG=CE,
(2)正方形边长BC=4,则BD=BC=4,
菱形BDFE的面积为S=4×4=16.
答:菱形BDFE的面积为16.
分析:(1)连接DE,则DE⊥BF,可得∠CDE=∠CBG,根据BC=DC,∠BCG=∠DCE,可证△BCG≌△DCE,可证CG=CE;
(2)已知正方形的边长可以证明BD,即BE,根据BE,DC即可求菱形BDFE的面积.
点评:本题考查了菱形的对角线垂直的性质,考查了正方形各边长相等、个内角为90°的性质,本题中求证△BCG≌△DCE是解题的关键.
∵∠ODG+∠OGD=90°,∠CBG+∠CGB=90°,∠CGB=∠OGD
∴∠CDE=∠CBG,
又∵BC=DC,∠BCG=∠DCE,
∴△BCG≌△DCE(ASA),
∴CG=CE,
(2)正方形边长BC=4,则BD=BC=4,
菱形BDFE的面积为S=4×4=16.
答:菱形BDFE的面积为16.
分析:(1)连接DE,则DE⊥BF,可得∠CDE=∠CBG,根据BC=DC,∠BCG=∠DCE,可证△BCG≌△DCE,可证CG=CE;
(2)已知正方形的边长可以证明BD,即BE,根据BE,DC即可求菱形BDFE的面积.
点评:本题考查了菱形的对角线垂直的性质,考查了正方形各边长相等、个内角为90°的性质,本题中求证△BCG≌△DCE是解题的关键.
练习册系列答案
相关题目