题目内容

如图,在矩形ABCD中,点E在AD上,点F在BC上,EC平分∠BED,DF=DA.
(1)求证:△BEC是等腰三角形.
(2)求证:四边形BFDE是平行四边形.

证明:(1)∵EC平分∠BED,
∴∠DEC=∠BEC,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠ECB,
∴∠BEC=∠BCE,
∴BE=BC,
∴△BEC是等腰三角形.

(2)∵AD=BC,AD=DF,BC=BE,
∴BE=DF,
∵∠DAB=∠DCB=90°,AB=CD,
∴Rt△ABE≌Rt△CDF,
∴AE=CF,
∵AD=BC,
∴BF=DE,
∴四边形BFDE是平行四边形.
分析:(1)根据EC平分∠BED,得到∠DEC=∠BEC,由矩形ABCD,推出AD∥BC,推出∠BEC=∠BCE即可;
(2)推出BE=DF,证Rt△ABE≌Rt△CDF,推出AE=CF,得到BF=DE,即可得到答案.
点评:本题主要考查对平行四边形的性质和判定,矩形的性质,等腰三角形的性质和判定,全等三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是证此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网