题目内容
如图,在直角坐标系中,射线OA与x轴正半轴重合,以O为旋转中心,将OA逆时针旋转:OA?OA1?OA2?…?OAn…,旋转角∠AOA1=2°,∠A1OA2=4°,∠A2OA3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A8OA9=2°,∠A9OA10=4°,…周而复始.则当OAn与y 轴正半轴第一次重合时,n的值为________.(提示:2+22+23+24+25+26+27+28=510)
24
分析:由题意知:每8组角为一个循环;若OA与y轴正半轴重合,那么射线OA旋转的度数为:360°•k+90°,即旋转的角度为整数,且是10的倍数;在每组的循环中,前4组或后4组角的度数和正好是10°的倍数,因此所求的n值必为4的倍数,能求出k是正整数的就是符合题意的n值.
解答:若经过旋转OAn与y轴正半轴重合,那么射线OA旋转的角度为:360°•k+90°,(k为正整数)
因此旋转的角度必为10°的倍数;
由题意知:2+22+23+24=30,25+26+27+28=480;
即n的值必为4的倍数,所以360°•k+90°能被4整除,
∴360°•k+90°时能被4整除,
∴k是正整数的值时,就是符合题意的n值;
∴当k=4时,n取最小值.即360°•k+90°=1530°,
∴510°×(n÷8)=1530°,
∴n=24.
故答案是:24.
点评:此题主要考查了旋转的性质、坐标与图形的性质.解题时,正确的表示出射线OA旋转的角度,并正确的判断出n是4的倍数,是解决此题的关键,难度较大.
分析:由题意知:每8组角为一个循环;若OA与y轴正半轴重合,那么射线OA旋转的度数为:360°•k+90°,即旋转的角度为整数,且是10的倍数;在每组的循环中,前4组或后4组角的度数和正好是10°的倍数,因此所求的n值必为4的倍数,能求出k是正整数的就是符合题意的n值.
解答:若经过旋转OAn与y轴正半轴重合,那么射线OA旋转的角度为:360°•k+90°,(k为正整数)
因此旋转的角度必为10°的倍数;
由题意知:2+22+23+24=30,25+26+27+28=480;
即n的值必为4的倍数,所以360°•k+90°能被4整除,
∴360°•k+90°时能被4整除,
∴k是正整数的值时,就是符合题意的n值;
∴当k=4时,n取最小值.即360°•k+90°=1530°,
∴510°×(n÷8)=1530°,
∴n=24.
故答案是:24.
点评:此题主要考查了旋转的性质、坐标与图形的性质.解题时,正确的表示出射线OA旋转的角度,并正确的判断出n是4的倍数,是解决此题的关键,难度较大.
练习册系列答案
相关题目