题目内容
【题目】如图,已知□ABCD中,AE⊥BC于点E , 以点B为中心,取旋转角等于∠ABC , 把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130°
B.150°
C.160°
D.170°
【答案】C
【解析】∵四边形ABCD是平行四边形,∠ADC=60°,
∴∠ABC=60°,∠DCB=120°,
∵∠ADA′=50°,
∴∠A′DC=10° ,
∴∠DA′B=130°,
∵AE⊥BC于点E ,
∴∠BAE=30°,
∵△BAE顺时针旋转,得到△BA′E′,
∴∠BA′E′=∠BAE=30°,
∴∠DA′E′=∠DA′B+∠BA′E′=160°.
故选:C.
【考点精析】本题主要考查了旋转的性质的相关知识点,需要掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了才能正确解答此题.
练习册系列答案
相关题目