题目内容
【题目】如图,点E、F分别在矩形ABCD的边BC、AD上,把这个矩形沿EF折叠后,点D恰好落在BC边上的G点处,且∠AFG=60°
(1)求证:GE=2EC;
(2)连接CH、DG,试证明:CH∥DG.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由折叠得到D=∠FGH=90°,∠C=∠H=90°,EC=EH,由矩形得出边平行,内角为直角,将问题转化到△EGH中,由30°所对的直角边等于斜边的一半,利用等量代换可得结论;
(2)由轴对称的性质,对称轴垂直平分对应点所连接的线段,垂直于同一直线的两条直线互相平行得出结论.
(1)由折叠得:∠D=∠FGH=90°,∠C=∠H=90°,EC=EH,
∵矩形ABCD,
∴AD∥BC,
∴∠FGE=∠AFG=60°,
∴∠HGE=90°-∠FGE=90°-60°=30°,
在Rt△EGH中,HE=GE,
即:GE=2HE=2EC.
(2)连接GD、HC,由折叠得:点D和点G、点C和点H关于直线EF成轴对称,
∴EF⊥GD,EF⊥HC,
∴GD∥HC.
【题目】某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) | 10 | 11 | 13 |
销售量y(kg) |
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?