题目内容
【题目】如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
(1)填写下面的表格.
∠A的度数 | 50° | 60° | 70° |
∠BOC的度数 |
(2)试猜想∠A与∠BOC之间存在一个怎样的数量关系,并证明你的猜想;
(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.
【答案】(1)表格见解析(2)∠BOC=90°+∠A(3)证明见解析
【解析】(1)
∠A的度数 | 50° | 60° | 70° |
∠BOC的度数 | 115° | 120° | 125° |
(2)猜想:∠BOC=90°+∠A.
理由:∵在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠ABC+∠ACB=180°﹣∠A,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A.
(3)证明:∵△ABC的高BE、CD交于O点,
∴∠BDC=∠BEA=90°,
∴∠ABE+∠BOD=90°,∠ABE+∠A=90°,
∴∠A=∠BOD.
练习册系列答案
相关题目