题目内容
【题目】如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____.
【答案】3
【解析】
根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点 平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.
当x=0时,y=4,∴B(0,4),当y=0时,x=1,
∴A(1,0),
∴OA=1,OB=4,
∵ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,
∴∠ABO=∠BCN=∠DAM,
∵∠AOB=∠BNC=∠AMD=90°,
∴△AOB≌△BNC≌△DMA (AAS),
∴OA=DM=BN=1,AM=OB=CN=4
∴OM=1+4=5,ON=4+1=5,
∴C(4,5),D(5,1),
把D(5,1)代入y=得:k=5,
∴y=,
当y=5时,x=1,
∴E(1,5),
点C向左平移到E时,平移距离为4﹣1=3,即:a=3,
故答案为:3.
练习册系列答案
相关题目