题目内容
【题目】已知是关于x的一元二次方程的两个实数根.
(1)是否存在实数k,使成立?若存在,求出k的值;若不存在,请说明理由.
(2)求使的值为整数的实数k的整数值.
【答案】(1)不存在满足条件的k值,理由见解析;(2)
【解析】分析:(1)由于方程有两个实数根,那么根据根与系数的关系可得x1+x2=1,x1x2=,然后把x1+x2、x1x2代入(2x1-x2)(x1-2x2)=-中,进而可求k的值;
(2)根据一元二次方程的根与系数的关系可得,根据的值为整数,以及k的范围即可确定k的取值;
详解:(1)∵x1、x2是一元二次方程4kx2-4kx+k+1=0的两个实数根,
∴x1+x2=1,x1x2=,
∴(2x1-x2)(x1-2x2)=2x12-4x1x2-x1x2+2x22=2(x1+x2)2-9x1x2=2×12-9×=2-,
若2-=-成立,
解上述方程得,k=,
∵△=16k2-4×4k(k+1)=-16k>0,
∴k<0,∵k=,
∴矛盾,
∴不存在这样k的值;
(2)原式=,
∴k+1=1或-1,或2,或-2,或4,或-4
解得k=0或-2,1,-3,3,-5.
∵k<0.
∴k=-2,-3或-5;
练习册系列答案
相关题目