题目内容
【题目】如图,抛物线顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).
(1)求抛物线的表达式;
(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)存在,G(1,0).
【解析】
(1)根据题目可设二次函数的顶点式,代入值求解
(2)根据二次函数图像的对称性找对称点,可求得E'F的解析式,即可求得G点坐标.
(1)设抛物线的表达式为:y=a(x﹣1)2+4,
把(0,3)代入得:3=a(0﹣1)2+4,
a=﹣1,
∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)存在,
如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,
∵E(0,3),
∴E'(2,3),
易得E'F的解析式为:y=3x﹣3,
当x=1时,y=3×1﹣3=0,
∴G(1,0)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目