题目内容
【题目】直线∥,一圆交直线a,b分别于A、B、C、D四点,点P是圆上的一个动点,连接PA、PC.
(1)如图1,直接写出∠PAB、∠PCD、∠P之间的数量关系为 ;
(2)如图2,直接写出∠PAB、∠PCD、∠P之间的数量关系为
(3)如图3,求证:∠P=∠PAB+∠PCD;
(4)如图4,直接写出∠PAB、∠PCD、∠P之间的数量关系为 .
【答案】(1)∠PCD=∠P+∠PAB;(2)∠PAB=∠P+∠PCD;(3)见解析;(4)∠PAB+∠P+∠PCD=360°.
【解析】
(1)方法一:设AB、PC相交于点E,由外角性质得:∠PEB=∠P+∠PAB,又因为a∥b,所以∠PEB=∠PCD,从而求解;方法二:过点P作PE∥AB;
(2)方法一:设AP、CD相交于点E,理由同(1)得∠PED=∠P+∠PCD,又因为a∥b,所以∠PED=∠PAB,从而求解;方法二:过点P作PE∥AB;
(3) 过点P作PE∥a,因为a∥b,所以PE∥b,所以∠PAB=∠APE,∠∠PCD =∠EPC,
又因为∠APC=∠APE+∠CPE,所以∠APC=∠PAB+∠PCD;
(4) ∠PAB+∠P+∠PCD=360°. 过点P作PE∥a,因为a∥b,所以PE∥b,所以∠PAB+∠APE=180°,∠PCD+∠CPE=180°,即∠PAB+∠APE+∠PCD+∠CPE=360°,从而求解;
解 :(1)∠PCD=∠P+∠PAB;
理由:设AB、PC相交于点E,由外角性质得:∠PEB=∠P+∠PAB,
∵a∥b,∴∠PEB=∠PCD,
∴∠PCD=∠P+∠PAB;
(2)∠PAB=∠P+∠PCD;
理由:设AP、CD相交于点E,理由同(1)得∠PED=∠P+∠PCD,
又∵a∥b,∴∠PED=∠PAB,
∴ ∠PAB=∠P+∠PCD ;
(3)过点P作PE∥a,∵a∥b,∴PE∥b,
∴∠PAB=∠APE,∠∠PCD =∠EPC,
∵∠APC=∠APE+∠CPE
∴∠APC=∠PAB+∠PCD;;
(4) ∠PAB+∠P+∠PCD=360°
理由:过点P作PE∥a,∵a∥b,∴PE∥b,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°
∴∠PAB+∠APE+∠PCD+∠CPE=360°
即∠PAB+∠APC+∠PCD=360°.
【题目】某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
班级 | 平均数(分) | 中位数 | 众数 |
九(1) | 85 | 85 | |
九(2) | 80 |
(1)根据图示填写上表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.