题目内容
【题目】Rt△ABO与Rt△CBD在平面直角坐标系中的位置如图所示,∠ABO=∠CBD=90°,若点A(2,﹣2),∠CBA=60°,BO=BD,则点C的坐标是( )
A. (2,2)B. (1,)C. (,1)D. (2,2)
【答案】C
【解析】
过点C作CE垂直x轴于点E.先证明△ODB为等边三角形,求出OD、DB长,然后根据∠DCB=30°,求出CD的长,进而求出OC,最后求出OE,CE,即求出点C坐标.
.解:如图,过点C作CE垂直x轴于点E.
∵A(2,﹣2),
∴OB=2,AB=2,
∵∠ABO=∠CBD=90°,
∴∠DBO=∠CBA=60°,
∵BO=BD,
∴∠D=DOB=60°,
DO=DB=BO=2,
∴∠BCD=30°,
CD=2BD=4,
∴CO=CD﹣OD=4﹣2=2,
∵∠COE=90°﹣∠COy=90°﹣60°=30°
∴CE=OC=1,OE=,
∴C(,1).
故选:C.
练习册系列答案
相关题目
【题目】某校七年级组织数学嘉年华活动,共评出三个奖项,年级处购买了一些奖品进行表彰,相关统计结果如下表(不完整)所示:
一等奖 | 二等奖 | 三等奖 | 合计 | |
获奖人数(单位:人) | 40 | |||
奖品单价(单位:元) | 12 | 9 | 6 | |
奖品金额(单位:元) | 300 |
已知二等奖的获奖人数比一等奖的获奖人数多5人.你能根据所给条件,分别求出三种奖项的获奖人数吗?请根据你所设的未知数,先填表(代数式不必化简),再列方程解答.