题目内容
【题目】综合与实践﹣四边形旋转中的数学
“智慧”数学小组在课外数学活动中研究了一个问题,请帮他们解答.
任务一:如图1,在矩形ABCD中,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为矩形,连接CG.
(1)请直接写出CG的长是______.
(2)如图2,当矩形AEGF绕点A旋转(比如顺时针旋转)至点G落在边AB上时,请计算DF与CG的长,通过计算,试猜想DF与CG之间的数量关系.
(3)当矩形AEGF绕点A旋转至如图3的位置时,(2)中DF与CG之间的数量关系是否还成立?请说明理由.
任务二:“智慧”数学小组对图形的旋转进行了拓展研究,如图4,在ABCD中,∠B=60°,AB=6,AD=8,E,F分别为AB,AD边的中点,四边形AEGF为平行四边形,连接CG.“智慧”数学小组发现DF与CG仍然存在着特定的数量关系.
(4)如图5,当AEGF绕点A旋转(比如顺时针旋转),其他条件不变时,“智慧”数学小组发现DF与CG仍然存在着这一特定的数量关系.请你直接写出这个特定的数量关系.
【答案】5
【解析】
(1)如图1中,由此EG交CD于H,则四边形FGHD是矩形.在Rt△CGH中,利用勾股定理即可解决问题;
(2)如图2中,作FP⊥AD于P.利用勾股定理相似三角形的性质,分别求出CG、DF即可解决问题;
(3)成立.连接AG、AC.只要证明△ADF∽△ACG,可得 即可解决问题;
(4)在图4中,通过计算即可解决问题;
(1)如图1中,由此EG交CD于H,则四边形FGHD是矩形.
在Rt△CGH中,GH=DF=4,CH=DH=AE=3,
∴CG= =5.
故答案为:5.
(2)如图2中,作FP⊥AD于P.
在矩形AEGF中,∵AE=3,EG=4,
∴AG=5,BG=AB-AG=1,
在Rt△CBG中,CG= ,
由△APF∽△AEG,可得 ,
∴ ,
∴AP= ,PF= ,DP=AD﹣AP=8﹣,
在Rt△PDF中,DF= ,
∴DF=CG.
(3)成立.理由如下:连接AG、AC.
由旋转可知:∠DAF=∠CAG,
由勾股定理可知:AC=,AG=5,
∵ ,,
∴,
∴△ADF∽△ACG,
∴,
∴DF=CG.
(4)如图4中,延长EG交CD于H,作CK⊥GH于K.
由题意可知四边形FGHD是平行四边形,四边形AEGF是平行四边形,
∴DF=GH=4,DH=FG=AE=3,CH=3,∠CHG=∠D=60°,
在Rt△CHK中,HK=,CK=,GK=GH﹣KH=,
在Rt△CGK中,CG= ,
∴CG=DF.
在图5中,连接AG、AC.
同法可证:△ACG∽△ADF,可得:=,可得CG=DF.