题目内容
【题目】如图,在△ABC中,AB=BC,∠ABC=90°,点F为AB延长线上一点,点E在BC上,BE=BF,连接AE,EF和CF.
(1)求证:△ABE≌△CBF;
(2)若∠CAE=30°,求∠EFC的度数.
【答案】(1)见解析;(2)30°
【解析】
试题分析:(1)根据已知利用SAS判定△ABE≌△CBF;
(2)根据题意可知△ABC和△EBF都是等腰直角三角形,求出∠AEB=75°.由(1)知△ABE≌△CBF,可得∠CFB=∠AEB=75°,利用角之间的关系即可解答.
解:(1)∵∠ABC=90°,F为AB延长线上一点,
∴∠ABC=∠CBF=90°.
在△ABE和△CBF中,
,
∴△ABE≌△CBF.
(2)∵在△ABC中,AB=BC,∠ABC=90°,点F为AB延长线上一点,点E在BC上,BE=BF,
∴△ABC和△EBF都是等腰直角三角形,
∴∠ACB=∠EFB=45°.
∵∠CAE=30°,
∴∠AEB=∠CAE+∠ACB=30°+45°=75°.
由(1)知△ABE≌△CBF,
∴∠CFB=∠AEB=75°.
∴∠EFC=∠CFB﹣∠EFB=75°﹣45°=30°.
练习册系列答案
相关题目