题目内容
【题目】如图,在等边△ABC中,O为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3.CE=2,则AB的长为 .
【答案】9
【解析】解:∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC﹣BD=AB﹣3;
∴∠BAD+∠ADB=120°,
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
∴ ,
即 = ,
解得AB=9.
所以答案是:9.
【考点精析】本题主要考查了三角形的外角和等边三角形的性质的相关知识点,需要掌握三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等边三角形的三个角都相等并且每个角都是60°才能正确解答此题.
练习册系列答案
相关题目