题目内容
【题目】如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
【答案】(1)AB=9,OC=9;(2)s=m2(0<m<9);(3).
【解析】试题分析:(1)已知抛物线的解析式,当 可确定点坐标;当时,可确定点的坐标,进而确定的长.
(2)直线 可得出相似,它们的面积比等于相似比的平方,由此得到关于的函数关系式;根据题干条件:点与点不重合,可确定的取值范围.
(3)①首先用列出的面积表达式, 的面积差即为的面积,由此可得关于的函数关系式,根据函数的性质可得到的最大面积以及此时的值;
②过做的垂线,这个垂线段的长即为与相切的的半径,可根据相似三角形得到的相关比例线段求得该半径的值,由此得解.
试题解析:(1)已知:抛物线
当x=0时,y=9,则:C(0,9);
当y=0时, ,得: ,则:A(3,0)、B(6,0);
∴AB=9,OC=9.
(2)
∴△AED∽△ABC,
即: 得:
(3)解法一:
∵0<m<9,
∴当 时, 取得最大值,最大值为此时,
记E与BC相切于点M,连接EM,则EM⊥BC,设E的半径为r.
在中,
∴△BOC∽△BME,
∴所求的面积为:
【题目】某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班级 | 平均数 | 中位数 | 众数 | 方差 | 及格率 | 优秀率 |
一班 | 7.6 | 8 | 3.82 | 70% | 30% | |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
(1)在表2中,a= ,b= ;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.
【题目】观察下列等式:
1×2=×(1×2×3﹣0×1×2)
2×3=×(2×3×4﹣1×2×3)
3×4=×(3×4×5﹣2×3×4)
…
计算:3×[1×2+2×3+3×4+…+n(n+1)]=_____.
【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.
分数段 | 频数 | 百分比 |
38 | 0.38 | |
________ | 0.32 | |
________ | ________ | |
10 | 0.1 | |
合计 | ________ | 1 |
根据上述信息,解答下列问题:
(1)这次书法作品比赛成绩的调查是采用_____(填“普查”或“抽样调查”),样本是_____.
(2)完成上表,并补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级奖的数量.