题目内容
【题目】如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线BD平分∠ABC,过点D作DE⊥BC,垂足为E,若BD=,BC=6,则AB=( )
A.B.2C.D.3
【答案】B
【解析】
过点D作DH⊥AB,交BA的延长线于H,可证四边形BEDH是正方形,可得BD=BE,DE=HD,∠HDE=∠ADC=90°,由“ASA”可证△ADH≌△CDE,可得AH=CE=2,即可求解.
解:如图,过点D作DH⊥AB,交BA的延长线于H,
∵∠ABC=∠ADC=90°,DH⊥AB,DE⊥BC,
∴四边形BEDH是矩形,
∵BD平分∠ABC,
∴∠DBE=45°,
∴∠DBE=∠BDE=45°,
∴BE=DE,
∴四边形BEDH是正方形,
∴BD=BE,DE=HD,∠HDE=∠ADC=90°,
∴HD=DE=HB=BE=4,∠HDA=∠CDE,
又∵∠H=∠DEC=90°,
∴△ADH≌△CDE(ASA),
∴CE=AH=BC-BE=6-4=2,
∴AB=BH-AH=4-2=2,
故选:B.
练习册系列答案
相关题目