题目内容
| 9 |
| 10 |
| 99 |
| 100 |
| 999 |
| 1000 |
| 9999999999 |
| 10000000000 |
9
9
.分析:根据上式加数的特点,分别差0.1,0.01,0.001,0.0001…0.0000000001就等于1,所以故假设都等于1,所以算式的结果是10,再用10减去0.1,0.01,0.001…0.0000000001的和,所以最后的结果是10-0.1111111111,计算后可得到答案.
解答:解:
+
+
+…+
=(1+1+1+1+1+1+1+1+1+1)-(0.1+0.01+0.01+…+0.0000000001),
=10-0.1111111111,
=9.8888888889,
答:原式的和的整数部分是9.
故答案为:9.
| 9 |
| 10 |
| 99 |
| 100 |
| 999 |
| 1000 |
| 9999999999 |
| 10000000000 |
=(1+1+1+1+1+1+1+1+1+1)-(0.1+0.01+0.01+…+0.0000000001),
=10-0.1111111111,
=9.8888888889,
答:原式的和的整数部分是9.
故答案为:9.
点评:解答此题的关键是使用凑数法,然后再在和里减去多加上的数即可.
练习册系列答案
相关题目