题目内容
(1)6.75-2.75÷[10%×(9.75-4
)]
(2)(2009×2008-20082)×0.012
(3)(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)
(4)
+
+
+
+
+
+
+
+
+
+…+
+
+
+…+
(5)
+
+
+
+
+
(6)1+
+
+
+…+
.
| 1 |
| 4 |
(2)(2009×2008-20082)×0.012
(3)(1+
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
(4)
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 60 |
| 2 |
| 60 |
| 3 |
| 60 |
| 59 |
| 60 |
(5)
| 22 |
| 1×3 |
| 42 |
| 3×5 |
| 62 |
| 5×7 |
| 82 |
| 7×9 |
| 102 |
| 9×11 |
| 122 |
| 11×13 |
(6)1+
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+100 |
分析:(1)把百分数和分数化为小数,然后先算小括号内的,再算中括号内的,最后算括号外的;
(2)括号内运用乘法分配律简算,再计算括号外的;
(3)此题可设
+
+
=a,
+
+
+
=b,然后代入计算,这样较简便;
(4)可把分母相同的分数加在一起,再进行计算;
(5)把原式变为11×(1-
)+21×(
-
)+31×(
-
)+41×(
-
)+51×(
-
)+61×(
-
),然后同分母分数相加减,计算即可;
(6)把分母等差数列写成简便形式,分子和分母同时乘以2,把分子2提出来,括号内同归分数的加减相互抵消,求得结果.
(2)括号内运用乘法分配律简算,再计算括号外的;
(3)此题可设
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
(4)可把分母相同的分数加在一起,再进行计算;
(5)把原式变为11×(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 11 |
| 1 |
| 13 |
(6)把分母等差数列写成简便形式,分子和分母同时乘以2,把分子2提出来,括号内同归分数的加减相互抵消,求得结果.
解答:解:(1)6.75-2.75÷[10%×(9.75-4
)],
=6.75-2.75÷[0.1×(9.75-4.25)],
=6.75-2.75÷[0.1×5.5],
=6.75-2.75÷0.55,
=6.75-5,
=1.75;
(2)(2009×2008-20082)×0.012,
=2008×(2009-2008)×0.0001,
=2008×0.0001,
=0.2008;
(3)设
+
+
=a,
+
+
+
=b,得:
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
),
=(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=(
+
+
+
)-(
+
+
),
=
;
(4)
+
+
+
+
+
+
+
+
+
+…+
+
+
+…+
,
=
+(
+
)+(
+
+
)+(
+
+
+
)+…+(
+
+
+…+
),
=
+1+
+2+…+
,
=
+1+
+2+…+
,
=
+
+
+
+…+
,
=(1+2+3+4+…+59)÷2,
=(1+59)×59÷2÷2,
=60×59÷4,
=885;
(5)
+
+
+
+
+
,
=11×(1-
)+21×(
-
)+31×(
-
)+41×(
-
)+51×(
-
)+61×(
-
),
=11-
+
-
+
-
+
-
+
-
+
-
,
=11+(
-
)+(
-
)+(
-
)+(
-
)+(
-
)-
,
=11+
+2+
+
+
-
,
=13+(3+
)+(1+
)+(1+
)+(1-
)-(4+
),
=15+(
+
+
-
-
),
=15+
,
=15
;
(6)1+
+
+
+…+
,
=1+1÷[(1+2)×2÷2]+1÷[(1+3)×3÷2]+…+1÷[(1+100)×100÷2],
=
+2÷(1+2)×2+2÷(1+3)×3+…+2÷(1+100)×100,
=2×(
+
-
+
-
+…+
-
),
=2×(1-
),
=2×
,
=
.
| 1 |
| 4 |
=6.75-2.75÷[0.1×(9.75-4.25)],
=6.75-2.75÷[0.1×5.5],
=6.75-2.75÷0.55,
=6.75-5,
=1.75;
(2)(2009×2008-20082)×0.012,
=2008×(2009-2008)×0.0001,
=2008×0.0001,
=0.2008;
(3)设
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
(1+
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
=(1+a)×b-(1+b)×a,
=b+ab-a-ab,
=b-a,
=(
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
| 1 |
| 1999 |
| 1 |
| 1993 |
| 1 |
| 1995 |
| 1 |
| 1997 |
=
| 1 |
| 1999 |
(4)
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 60 |
| 2 |
| 60 |
| 3 |
| 60 |
| 59 |
| 60 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| 60 |
| 2 |
| 60 |
| 3 |
| 60 |
| 59 |
| 60 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| (1+59)×59÷2 |
| 60 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 59 |
| 2 |
=
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| 4 |
| 2 |
| 59 |
| 2 |
=(1+2+3+4+…+59)÷2,
=(1+59)×59÷2÷2,
=60×59÷4,
=885;
(5)
| 22 |
| 1×3 |
| 42 |
| 3×5 |
| 62 |
| 5×7 |
| 82 |
| 7×9 |
| 102 |
| 9×11 |
| 122 |
| 11×13 |
=11×(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 11 |
| 1 |
| 13 |
=11-
| 11 |
| 3 |
| 21 |
| 3 |
| 21 |
| 5 |
| 31 |
| 5 |
| 31 |
| 7 |
| 41 |
| 7 |
| 41 |
| 9 |
| 51 |
| 9 |
| 51 |
| 11 |
| 61 |
| 11 |
| 61 |
| 13 |
=11+(
| 21 |
| 3 |
| 11 |
| 3 |
| 31 |
| 5 |
| 21 |
| 5 |
| 41 |
| 7 |
| 31 |
| 7 |
| 51 |
| 9 |
| 41 |
| 9 |
| 61 |
| 11 |
| 51 |
| 11 |
| 61 |
| 13 |
=11+
| 10 |
| 3 |
| 10 |
| 7 |
| 10 |
| 9 |
| 10 |
| 11 |
| 61 |
| 13 |
=13+(3+
| 1 |
| 3 |
| 3 |
| 7 |
| 1 |
| 9 |
| 1 |
| 11 |
| 9 |
| 13 |
=15+(
| 1 |
| 3 |
| 3 |
| 7 |
| 1 |
| 9 |
| 1 |
| 11 |
| 9 |
| 13 |
=15+
| 809 |
| 9009 |
=15
| 809 |
| 9009 |
(6)1+
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+100 |
=1+1÷[(1+2)×2÷2]+1÷[(1+3)×3÷2]+…+1÷[(1+100)×100÷2],
=
| 2 |
| 2 |
=2×(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 100 |
| 1 |
| 101 |
=2×(1-
| 1 |
| 101 |
=2×
| 100 |
| 101 |
=
| 200 |
| 101 |
点评:此题考查了四则混合运算的运算顺序,以及运用运算定律或运算技巧简算的能力.
练习册系列答案
相关题目