题目内容

有100个自然数,它们的和是偶数.在这100个自然数中,奇数的个数比偶数的个数多.问:这些数中至多有多少个偶数?
考点:奇偶性问题
专题:数性的判断专题
分析:100个自然数的和是偶数,所以100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.
解答: 解:根据数的奇偶性可知,100个自然数,奇数的个数比偶数的个数多,
那么奇数最少有51个,偶数有49个,
但由于51个奇数的和为奇数,再加上49个偶数100个自然数的和是奇数,
所以100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.
答:至多有48个偶数.
点评:偶数个奇数相加为偶数,奇数个奇数相加为奇数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网