题目内容
计算:
+
+
+…+
.
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 20002+20012 |
| 2000×2001 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:通过观察,把每个分数拆成两个分数,原式变为(
+
)+(
+
)+(
+
)+…(
+
)=
+
+
+
+
+
+…+
+
,因为上式中分母为1~2000的同分母的两个分数之和,都是2,进而解决问题.
| 22 |
| 1×2 |
| 12 |
| 1×2 |
| 32 |
| 2×3 |
| 22 |
| 2×3 |
| 42 |
| 3×4 |
| 32 |
| 3×4 |
| 20012 |
| 2000×2001 |
| 20002 |
| 2000×2001 |
| 2 |
| 1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 2001 |
| 2000 |
| 2000 |
| 2001 |
解答:
解:
+
+
+…+
=(
+
)+(
+
)+(
+
)+…(
+
)
=
+
+
+
+
+
+…+
+
=2+(
+
)+(
+
)+(
+
)…+(
+
)+
=2×2000+
=4000+
=4000
.
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 20002+20012 |
| 2000×2001 |
=(
| 22 |
| 1×2 |
| 12 |
| 1×2 |
| 32 |
| 2×3 |
| 22 |
| 2×3 |
| 42 |
| 3×4 |
| 32 |
| 3×4 |
| 20012 |
| 2000×2001 |
| 20002 |
| 2000×2001 |
=
| 2 |
| 1 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 2001 |
| 2000 |
| 2000 |
| 2001 |
=2+(
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 1999 |
| 2000 |
| 2001 |
| 2000 |
| 2000 |
| 2001 |
=2×2000+
| 2000 |
| 2001 |
=4000+
| 2000 |
| 2001 |
=4000
| 2000 |
| 2001 |
点评:仔细注意观察题目中数字构成的特点和规律,通过数字拆分,运用运算技巧,进行简便计算.
练习册系列答案
相关题目