题目内容
如果
+
+
+…+
=
,那么 n= .
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
| 2011 |
| 2012 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:先化简等式左边,左边的每个分数可拆成两个分数相减的形式,通过加减相互抵消,得出
,于是
=
,解此等式即可.
| n |
| n+1 |
| n |
| n+1 |
| 2011 |
| 2012 |
解答:
解:
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
所以,
=
2012n=2011n+2011
n=2011
故答案为:2011.
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
所以,
| n |
| n+1 |
| 2011 |
| 2012 |
2012n=2011n+2011
n=2011
故答案为:2011.
点评:此题解答的关键在于运用分数的拆分,使计算简单化.
练习册系列答案
相关题目