题目内容
| 1 |
| 52 |
| 47 |
| 52×51 |
| 47×46 |
| 52×51×50 |
| 47×46×45 |
| 52×51×50×49 |
| 47×46×45…×2×1 |
| 52×51×50×49…×6×5 |
分析:计算中可以应用下面的公式:1234+2345+…+n(n+1)(n+2)(n+3)=
n(n+1)(n+2)(n+3)(n+4).
将原式各项的分母都通分为4849505152,则各项的分子依次为:51504948,50494847,49484746,…4321.
根据上面的公式,分子的和为
×4849505152,与分母约分,结果为
.
| 1 |
| 5 |
将原式各项的分母都通分为4849505152,则各项的分子依次为:51504948,50494847,49484746,…4321.
根据上面的公式,分子的和为
| 1 |
| 5 |
| 1 |
| 5 |
解答:解:
+
+
+
+…+
=
=
=
| 1 |
| 52 |
| 47 |
| 52×51 |
| 47×46 |
| 52×51×50 |
| 47×46×45 |
| 52×51×50×49 |
| 47×46×45…×2×1 |
| 52×51×50×49…×6×5 |
=
| 51504948+505494847+…+4321 |
| 4849505152 |
=
| ||
| 4849505152 |
=
| 1 |
| 5 |
点评:此题解答的关键运用通项公式:1234+2345+…+n(n+1)(n+2)(n+3)=
n(n+1)(n+2)(n+3)(n+4).
| 1 |
| 5 |
练习册系列答案
相关题目