题目内容

解方程组:
-
3
x-3y=3
3
2x2-y2=6
考点:二元一次方程组的求解
专题:简易方程
分析:把-
3
x-3y=3
3
,化简为y=-
3
3
x-
3
,把y=-
3
3
x-
3
,代入2x2-y2=6,即2x2-(-
3
3
x-
3
2=6,由此求出x的值,进而求出y的值.
解答: 解:-
3
x-3y=3
3

y=-
3
3
x-
3

把y=-
3
3
x-
3

代入2x2-y2=6,即2x2-(-
3
3
x-
3
2=6,
5
3
x2-2x-9=0
5x2-6x-27=0
(x-3)(5x+9)=0
x=3或者x=-
9
5

把x=3代入-
3
x-3y=3
3
,即y=-2
3

把x=-
9
5
代入-
3
x-3y=3
3
,即y=-
2
5
3

所以方程组的解是:
x=3
y=-2
3
或者
x=-
9
5
y=-
2
5
3
点评:关键是把给出的算式进行化简,利用代入的方法求出未知数的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网