题目内容
(2009?中山市)一个圆柱与一个圆锥的体积相等,已知圆锥的底面积是圆柱底面积的
,则圆锥的高是圆柱的高的9倍.( )(判断对错)
| 1 | 3 |
分析:根据题干,设圆柱与圆锥的体积相等是V,圆锥的底面积是S,则圆柱的底面积就是3S,据此根据圆柱与圆锥的体积公式求出它们的高,再用圆锥的高出一圆柱的高即可判断.
解答:解:设圆柱与圆锥的体积相等是V,圆锥的底面积是S,则圆柱的底面积就是3S,
所以圆柱的高是:
,
圆锥的高是:
,
÷
=9,
所以圆锥的高是圆柱的高的9倍,原题说法正确.
故答案为:√.
所以圆柱的高是:
| V |
| 3S |
圆锥的高是:
| 3V |
| S |
| 3V |
| S |
| V |
| 3S |
所以圆锥的高是圆柱的高的9倍,原题说法正确.
故答案为:√.
点评:此题考查了圆柱的体积=底面积×高,圆锥的体积=底面积×高×
的公式的灵活应用.
| 1 |
| 3 |
练习册系列答案
相关题目