题目内容

20.一个圆锥的底面半径扩大到原来的2倍,高缩小到原来的$\frac{1}{3}$,它的体积扩大到它的多少倍?

分析 根据圆锥的体积公式:v=$\frac{1}{3}$sh,再根据因数与积的变化规律,圆锥的底面半径扩大2倍,它的底面积就扩大4倍,高缩小到原来的$\frac{1}{3}$,也就是一个因数扩大4倍,另一个因数缩小3倍,积变为4×$\frac{1}{3}$=$\frac{4}{3}$,据此解答即可.

解答 解:圆锥的底面半径扩大2倍,它的底面积就扩大4倍,高缩小到原来$\frac{1}{3}$,也就是一个因数扩大4倍,另一个因数缩小3倍.
所以圆锥的底面半径扩大到原来的2倍,高缩小到原来的$\frac{1}{3}$,它的体积变为它的2×2×$\frac{1}{3}$=$\frac{4}{3}$.
答:它的体积扩大到它的$\frac{4}{3}$倍.

点评 此题主要根据圆锥的体积公式和运算与积的变化规律进行解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网