题目内容

4.已知x2+y2+z2-2x+4y-6z+14=0,求代数式x+y+z的值.

分析 把14分成1+4+9,与剩余的项构成3个完全平方式,从而出现三个非负数的和等于0的情况,则每一个非负数等于0,解即可.

解答 解:因为x2+y2+z2-2x+4y-6z+14=0,
所以x2-2x+1+y2+4y+4+z2-6z+9=0,
所以(x-1)2+(y+2)2+(z-3)2=0,
所以x-1=0,y+2=0,z-3=0,
所以x=1,y=-2,z=3,
故x+y+z=1-2+3=2.
代数式x+y+z的值是2.

点评 本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网