题目内容
如图,已知AB=16cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是________cm2.(π取3.14)
100.48
分析:如图所示,将空白部分②旋转平移到阴影部分①的位置,则会得到一个直径为
AB的半圆,同样的方法,对其他相同的空白图形进行旋转平移,这样共得到两个直径为
AB的圆,于是可以看出阴影部分的面积=以AB为直径的圆的面积-2个以
AB为直径的圆的面积,AB的值已知,于是问题得解.

解答:阴影部分的面积:
3.14×(16÷2)2-2×3.14×(
×16÷2)2,
=3.14×64-6.28×16,
=200.96-100.48,
=100.48(平方厘米);
答:阴影部分的面积是100.48平方厘米.
故答案为:100.48.
点评:解答此题的关键是:利用旋转平移的方法,得到小圆的直径与大圆的直径的关系,进而得出:阴影部分的面积=以AB为直径的圆的面积-2个以
AB为直径的圆的面积.
分析:如图所示,将空白部分②旋转平移到阴影部分①的位置,则会得到一个直径为
解答:阴影部分的面积:
3.14×(16÷2)2-2×3.14×(
=3.14×64-6.28×16,
=200.96-100.48,
=100.48(平方厘米);
答:阴影部分的面积是100.48平方厘米.
故答案为:100.48.
点评:解答此题的关键是:利用旋转平移的方法,得到小圆的直径与大圆的直径的关系,进而得出:阴影部分的面积=以AB为直径的圆的面积-2个以
练习册系列答案
相关题目