题目内容
分析:圆柱的底面直径和高已知,圆锥的底面直径和圆柱的底面直径相等,高已知,于是即可分别利用圆锥的体积V=
Sh和圆柱的体积V=Sh,求出这囤稻谷的总的体积,再乘每立方米稻谷的重量,就是这囤稻谷的总重量.
| 1 |
| 3 |
解答:解:[
×3.14×(
)2×0.6+3.14×(
)2×2]×640,
=(3.14×0.2+6.28)×640,
=(0.628+6.28)×640,
=6.888×640,
=4408.32(千克);
答:这囤稻谷一共有4408.32千克.
| 1 |
| 3 |
| 2 |
| 2 |
| 2 |
| 2 |
=(3.14×0.2+6.28)×640,
=(0.628+6.28)×640,
=6.888×640,
=4408.32(千克);
答:这囤稻谷一共有4408.32千克.
点评:此题主要考查组合体的体积的计算方法,要求能熟练掌握圆柱与圆锥的体积的计算方法.
练习册系列答案
相关题目