题目内容
12个铁圆锥可以熔铸成等底等高的圆柱的个数是( )
| A、12个 | B、8个 | C、3个 | D、4个 |
考点:圆锥的体积,圆柱的侧面积、表面积和体积
专题:立体图形的认识与计算
分析:熔铸前后的体积不变,因为等底等高的圆柱的体积是圆锥的体积的3倍,所以3个相同的圆锥铁块就能熔铸成一个与它等底等高的圆柱,利用除法的意义求出12里面有几个3即可.
解答:
解:12÷3=4(个),
答:能熔铸成4个与它等底等高的圆柱.
故选:D.
答:能熔铸成4个与它等底等高的圆柱.
故选:D.
点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.
练习册系列答案
相关题目
3月1日新学期开学第一天,某校五年级三班全班有55名同学都到校上学,这个班今天的出勤率是( )
| A、55% | B、45% |
| C、100% | D、无法确定 |
25×96×4=25×4×96运用了乘法( )
| A、交换律 | B、结合律 | C、分配律 |
一本故事书有a页,丫丫每天看b页,看了5天,还剩多少页?( )
| A、a-5b | B、a-b |
| C、5b | D、a+5b |
两个圆柱的高相等,底面半径之比是1:3,那么它们的体积之比是( )
| A、1:3 | B、1:6 | C、1:9 |
| A、75.36 |
| B、188.4 |
| C、18.84 |
| D、25.12 |