题目内容
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
分析:可以先求出边上的3个小三角形与S△ABC的面积之间的关系:S△BDF=S△ABC×
×
=
S△ABC,S△CDE=S△ABC×
×
=
S△ABC,S△AEF=S△ABC×
×
=
S△ABC,所以S△DEF=S△ABC-S△BDF-S△CDE-S△AEF=
S△ABC,依此即可求解.
| 3 |
| 4 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
| 1 |
| 5 |
| 5 |
| 6 |
| 1 |
| 6 |
| 61 |
| 120 |
解答:解:因为S△BDF=S△ABC×
×
=
S△ABC,
S△CDE=S△ABC×
×
=
S△ABC,
S△AEF=S△ABC×
×
=
S△ABC,
所以S△DEF=S△ABC-S△BDF-S△CDE-S△AEF=
S△ABC,
答:三角形DEF的面积与三角形ABC的面积之比为61:120.
| 3 |
| 4 |
| 1 |
| 6 |
| 1 |
| 8 |
S△CDE=S△ABC×
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
S△AEF=S△ABC×
| 1 |
| 5 |
| 5 |
| 6 |
| 1 |
| 6 |
所以S△DEF=S△ABC-S△BDF-S△CDE-S△AEF=
| 61 |
| 120 |
答:三角形DEF的面积与三角形ABC的面积之比为61:120.
点评:考查了三角形面积与底的正比关系,得到边上的3个小三角形与S△ABC的面积之间的关系是解题的难点,本题有一定的难度.
练习册系列答案
相关题目