题目内容
| 递等式计算 369+635+331+465 | (361+361+361+361)×25 | 328×57+328×43 |
| 102×64-64×2 | 102×64 | 3200÷80×132-32 |
考点:整数四则混合运算
专题:运算顺序及法则
分析:(1)利用加法交换律与结合律简算;
(2)利用乘法的意义简算;
(3)(4)(5)利用乘法分配律简算简算;
(6)先算除法,再算乘法,最后算减法.
(2)利用乘法的意义简算;
(3)(4)(5)利用乘法分配律简算简算;
(6)先算除法,再算乘法,最后算减法.
解答:
解:(1)369+635+331+465
=(369+331)+(635+465)
=700+1100
=1800;
(2)(361+361+361+361)×25
=361×(4×25)
=361×100
=36100;
(3)328×57+328×43
=328×(57+43)
=328×100
=32800;
(4)102×64-64×2
=(102-2)×64
=100×64
=6400;
(5)102×64
=100×64+2×64
=6400+128
=6528;
(6)3200÷80×132-32
=40×132-32
=5280-32
=5248.
=(369+331)+(635+465)
=700+1100
=1800;
(2)(361+361+361+361)×25
=361×(4×25)
=361×100
=36100;
(3)328×57+328×43
=328×(57+43)
=328×100
=32800;
(4)102×64-64×2
=(102-2)×64
=100×64
=6400;
(5)102×64
=100×64+2×64
=6400+128
=6528;
(6)3200÷80×132-32
=40×132-32
=5280-32
=5248.
点评:整数混合运算的关键是抓住运算顺序,正确按运算顺序计算即可.
练习册系列答案
相关题目