题目内容

根据 a+b=17,
1
5
a
b
1
4
,则 
a
b
=
 
.[a≠0,b≠0].
考点:分数大小的比较
专题:运算顺序及法则
分析:因为两个分数的分子都为1,所以根据同分子分数的大小比较方法,把不等式变形为4<
a
b
<5,然后把a+b=17代入这个不等式,得出b的取值范围:2.8<b<3.4,再根据b是自然数,求出b=3;那么a=14,问题得解.
解答: 解:因为
1
5
a
b
1
4
,;
所以,4<
b
a
<5,把a+b=17代入这个不等式,可得:
4<
17-a
a
<5
4<
17
a
-1<5
5<
17
a
<6
17
6
<a<
17
5

2.8<a<3.4
因为a是自然数,所以a=3;
那么b=17-3=14;
所以
a
b
=
3
14

故答案为:
3
14
点评:本题关键是利用代入法和不等式的性质求出b的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网