题目内容
我们规定:△n=n×n+l),比如:△l=l×2,△2=2×3,△3=3×4.请问:
(1)如果要使等式
+
+
+…+
=
成立,那么方框内应填入什么数?
(2)计算:△1+△2+△3+…+△100.
(1)如果要使等式
| 1 |
| △1 |
| 1 |
| △2 |
| 1 |
| △3 |
| 1 |
| △99 |
| □ |
| △100 |
(2)计算:△1+△2+△3+…+△100.
考点:定义新运算
专题:计算问题(巧算速算)
分析:(1)将式子
+
+
+…+
变形为
+
+
+…+
,再拆项抵消即可求解;
(2)将△1+△2+△3+…+△100变形为l×2+2×3+3×4+…+100×101,再根据1×2+2×3+3×4+…+n(n+1)=
n(n+1)(n+2)进行计算即可求解.
| 1 |
| △1 |
| 1 |
| △2 |
| 1 |
| △3 |
| 1 |
| △99 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
(2)将△1+△2+△3+…+△100变形为l×2+2×3+3×4+…+100×101,再根据1×2+2×3+3×4+…+n(n+1)=
| 1 |
| 3 |
解答:
解:(1)
+
+
+…+
=
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
.
答:方框内应填入99.
(2)△1+△2+△3+…+△100
=l×2+2×3+3×4+…+100×101
=
×100×101×102
=343400.
| 1 |
| △1 |
| 1 |
| △2 |
| 1 |
| △3 |
| 1 |
| △99 |
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 99×100 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
=1-
| 1 |
| 100 |
=
| 99 |
| 100 |
答:方框内应填入99.
(2)△1+△2+△3+…+△100
=l×2+2×3+3×4+…+100×101
=
| 1 |
| 3 |
=343400.
点评:此题考查定义新运算,搞清运算的顺序与计算方法是解答的前提.注意拆项法和抵消法的灵活运用.
练习册系列答案
相关题目