题目内容
14.如果一个正方体和一个圆柱体底面周长相等,高也相等,则它们的体积也相等.×.(判断对错)分析 根据周长相等的长方形、正方形、圆形,其中圆的面积最大,因为正方形与圆柱的底面周长相等,高相等,而圆柱体的底面积大于正方体的底面积,根据正方体的体积、圆柱体的体积=底面积×高进行判断即可.
解答 解:因为圆柱的底面周长=正方体的底面周长,
所以圆柱的底面积>正方体的底面积,
高相等,因此圆柱的体积>正方体的体积.
故答案为:×.
点评 此题主要考查的知识点是:1、周长相等的长方形、正方形、圆形,其中圆的面积最大,其次是正方形的面积,长方形的面积最小;2、圆柱的体积公式和正方体的体积公式的应用.
练习册系列答案
相关题目
9.圆锥和圆柱半径之比为3:2,体积之比为3:4,则圆锥和圆柱高的比是( )
| A. | 1:1 | B. | 4:3 | C. | 9:4 | D. | 9:16 |
4.与7最接近的是( )
| A. | 6.899 | B. | 7.01 | C. | 7.1 |