题目内容
| AD |
| AB |
| DE |
| DB |
| EF |
| EB |
| FG |
| FB |
| 1 |
| 3 |
| 65 |
| 81 |
| 65 |
| 81 |
分析:因为
=
=
=
=
,根据高一定时,三角形的面积与底成正比例的性质,可得三角形BCG=
三角形BFC=
×
三角形BEC=
×
×
三角形BDC=
×
×
×
三角形ABC=
三角形ABC,因为三角形ABC的面积是1,由此求出三角形BGC的面积,根据三角形AGC的面积=三角形ABC的面积-三角形BGC的面积即可解答.
| AD |
| AB |
| DE |
| DB |
| EF |
| EB |
| FG |
| FB |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 16 |
| 81 |
解答:解:因为
=
=
=
=
,
所以三角形BCG=
三角形BFC,
=
×
三角形BEC,
=
×
×
三角形BDC,
=
×
×
×
三角形ABC,
=
三角形ABC,
因为三角形ABC的面积是1,
所以三角形BCG=
×1=
,
所以三角形AGC=1-
=
.
答:三角形AGC的面积是
.
| AD |
| AB |
| DE |
| DB |
| EF |
| EB |
| FG |
| FB |
| 1 |
| 3 |
所以三角形BCG=
| 2 |
| 3 |
=
| 2 |
| 3 |
| 2 |
| 3 |
=
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=
| 16 |
| 81 |
因为三角形ABC的面积是1,
所以三角形BCG=
| 16 |
| 81 |
| 16 |
| 81 |
所以三角形AGC=1-
| 16 |
| 81 |
| 65 |
| 81 |
答:三角形AGC的面积是
| 65 |
| 81 |
点评:此题考查了高一定时,三角形的面积与底成正比的关系的灵活应用.
练习册系列答案
相关题目