题目内容
| 计算下列各题. ①1+2+3+4+…+29+30 |
②21+22+23+…30+31+32 |
| ③5+10+15+…90+95+100 | ④1+3+5+7+…47+49. |
分析:通过观察,①②题是公差为1的等差数列,③题是公差为5的等差数列,④题是公差为2的等差数列.确定好项数后,运用高斯求和公式计算即可.
解答:解:①1+2+3+4+…+29+30,
=(1+30)×30÷2,
=31×30÷2,
=465;
②21+22+23+…30+31+32,
=(21+32)×12÷2,
=53×12÷2,
=318;
③5+10+15+…90+95+100,
=(5+100)×[(100-5)÷5+1]÷2,
=105×20÷2,
=1050;
④1+3+5+7+…47+49,
=(1+49)×[(49-1)÷2+1]÷2,
=50×25÷2,
=625.
=(1+30)×30÷2,
=31×30÷2,
=465;
②21+22+23+…30+31+32,
=(21+32)×12÷2,
=53×12÷2,
=318;
③5+10+15+…90+95+100,
=(5+100)×[(100-5)÷5+1]÷2,
=105×20÷2,
=1050;
④1+3+5+7+…47+49,
=(1+49)×[(49-1)÷2+1]÷2,
=50×25÷2,
=625.
点评:运用高斯求和公式计算时,重点在于确定项数,项数公式:(末项-首项)÷2+1.
练习册系列答案
相关题目