题目内容
分析:根据题干,用金牌的直径减去边框宽,先求出金牌的外圆的半径是(70-5×2)÷2=30毫米,内圆的半径是30÷2=15毫米,据此利用圆环的面积=π(R2-r2)计算即可解答.
解答:解:外圆的半径是(70-5×2)÷2=30(毫米)
内圆的半径是30÷2=15(毫米)
所以环形的玉璧的面积是:3.14×(302-152)
=3.14×(900-225)
=3.14×675
=2119.5(平方毫米)
答:环形的玉璧的面积是2119.5平方毫米.
内圆的半径是30÷2=15(毫米)
所以环形的玉璧的面积是:3.14×(302-152)
=3.14×(900-225)
=3.14×675
=2119.5(平方毫米)
答:环形的玉璧的面积是2119.5平方毫米.
点评:此题主要考查圆环的面积公式的计算应用,关键是明确环形的玉璧的内外圆的半径.
练习册系列答案
相关题目