题目内容
求下面每组数的最大公因数和最小公倍数.
16和4
9和36
20和24.
16和4
9和36
20和24.
分析:16和4,9和36中两个数为倍数关系,最大公约数为较小的数,最小公倍数为较大的数;
求两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,由此解决问题即可.
求两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,由此解决问题即可.
解答:解:16和4的最大公因数是4,最小公倍数是16;
9和36的最大公因数是9,最小公倍数是36;
20=2×2×5,
24=2×2×2×3,
所以20和24的最大公约数是2×2=4,
最小公倍数是2×2×5×2×3=120.
9和36的最大公因数是9,最小公倍数是36;
20=2×2×5,
24=2×2×2×3,
所以20和24的最大公约数是2×2=4,
最小公倍数是2×2×5×2×3=120.
点评:此题考查了求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答;
同时考查了求两个数为倍数关系时的最大公约数和最小公倍数:两个数为倍数关系,最大公约数为较小的数;最小公倍数为较大的数.
同时考查了求两个数为倍数关系时的最大公约数和最小公倍数:两个数为倍数关系,最大公约数为较小的数;最小公倍数为较大的数.
练习册系列答案
相关题目