题目内容
能简算的要简算
99×
|
(1.25+
| ||||||||
|
3.6×42.3×3.75-12.5×0.423×28. |
分析:(1)把99看作98+1,运用乘法分配律计算99×
,原式变为99+
-
,然后运用结合律简算;
(2)先算括号内的,然后约分即可;
(3)通过观察,每个分数的分母为两个连续自然数的乘积,因此,每个分数都可以拆成两个分数相减的形式,然后通过分数的加减相互抵消,求出结果;
(4)此题应通过数的拆分,运用乘法分配律简算.
| 99 |
| 98 |
| 99 |
| 98 |
| 1 |
| 98 |
(2)先算括号内的,然后约分即可;
(3)通过观察,每个分数的分母为两个连续自然数的乘积,因此,每个分数都可以拆成两个分数相减的形式,然后通过分数的加减相互抵消,求出结果;
(4)此题应通过数的拆分,运用乘法分配律简算.
解答:解:(1)99×
-
,
=(98+1)×
-
,
=99+
-
,
=99+(
-
),
=99+1,
=100;
(2)(1.25+
)×8×
,
=(1
+
)×8×
,
=
×8×
,
=
;
(3)
+
+
+…+
,
=
-
+
-
+
-
+…+
-
,
=
,
=
;
(4)3.6×42.3×3.75-12.5×0.423×28,
=0.9×4×42.3×3.75-0.125×42.3×7×4,
=0.9×42.3×4×3.75-0.125×4×42.3×7,
=0.9×42.3×15-0.5×42.3×7,
=42.3×(0.9×15-0.5×7),
=42.3×(13.5-3.5),
=42.3×10,
=423.
| 99 |
| 98 |
| 1 |
| 98 |
=(98+1)×
| 99 |
| 98 |
| 1 |
| 98 |
=99+
| 99 |
| 98 |
| 1 |
| 98 |
=99+(
| 99 |
| 98 |
| 1 |
| 98 |
=99+1,
=100;
(2)(1.25+
| 7 |
| 8 |
| 7 |
| 34 |
=(1
| 1 |
| 4 |
| 7 |
| 8 |
| 7 |
| 34 |
=
| 17 |
| 8 |
| 7 |
| 34 |
=
| 7 |
| 2 |
(3)
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 99×100 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 99 |
| 1 |
| 100 |
=
| 1 |
| 2 |
| 1 |
| 100 |
=
| 49 |
| 100 |
(4)3.6×42.3×3.75-12.5×0.423×28,
=0.9×4×42.3×3.75-0.125×42.3×7×4,
=0.9×42.3×4×3.75-0.125×4×42.3×7,
=0.9×42.3×15-0.5×42.3×7,
=42.3×(0.9×15-0.5×7),
=42.3×(13.5-3.5),
=42.3×10,
=423.
点评:完成此题,应认真分析题中数据,运用所学运算定律或运算技巧,灵活简算.
练习册系列答案
相关题目