题目内容

能简算的要简算
99×
99
98
-
1
98
(1.25+
7
8
)×8×
7
34
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
3.6×42.3×3.75-12.5×0.423×28.
分析:(1)把99看作98+1,运用乘法分配律计算99×
99
98
,原式变为99+
99
98
-
1
98
,然后运用结合律简算;
(2)先算括号内的,然后约分即可;
(3)通过观察,每个分数的分母为两个连续自然数的乘积,因此,每个分数都可以拆成两个分数相减的形式,然后通过分数的加减相互抵消,求出结果;
(4)此题应通过数的拆分,运用乘法分配律简算.
解答:解:(1)99×
99
98
-
1
98

=(98+1)×
99
98
-
1
98

=99+
99
98
-
1
98

=99+(
99
98
-
1
98
),
=99+1,
=100;

(2)(1.25+
7
8
)×8×
7
34

=(1
1
4
+
7
8
)×8×
7
34

=
17
8
×8×
7
34

=
7
2


(3)
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100

=
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
99
-
1
100

=
1
2
1
100

=
49
100


(4)3.6×42.3×3.75-12.5×0.423×28,
=0.9×4×42.3×3.75-0.125×42.3×7×4,
=0.9×42.3×4×3.75-0.125×4×42.3×7,
=0.9×42.3×15-0.5×42.3×7,
=42.3×(0.9×15-0.5×7),
=42.3×(13.5-3.5),
=42.3×10,
=423.
点评:完成此题,应认真分析题中数据,运用所学运算定律或运算技巧,灵活简算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网