题目内容
15.计算,能简便的用简便方法计算.| $9\frac{4}{11}$-$1\frac{1}{3}$-$4\frac{2}{3}$ | $\frac{2}{3}$×$\frac{4}{15}$+$\frac{2}{3}$×$\frac{11}{15}$ | (5.52÷0.6-8.6)×1.5 |
| $\frac{3}{4}$-$\frac{2}{3}$×($\frac{5}{8}$-$\frac{1}{2}$) | ($6\frac{1}{2}$-$5\frac{3}{10}$)×(7-$4\frac{1}{3}$) | 87×93-6801 |
| $\frac{1}{5}$÷[($\frac{1}{6}$+$\frac{5}{18}$)×$\frac{3}{5}$] | 17×[($1\frac{1}{3}$+1.5)÷$1\frac{1}{4}$] |
分析 (1)根据减法的性质进行简算;
(2)根据乘法分配律进行简算;
(3)先算小括号里面的除法,再算小括号里面的减法,最后算乘法;
(4)先算小括号里面的减法,再算乘法,最后算括号外面的减法;
(5)先算小括号里面的减法,再算乘法;
(6)先算乘法,再算减法;
(7)先算小括号里面的加法,再算中括号里面的乘法,最后算除法;
(8)先算小括号里面的加法,再算中括号里面的除法,最后算乘法.
解答 解:(1)$9\frac{4}{11}$-$1\frac{1}{3}$-$4\frac{2}{3}$
=$9\frac{4}{11}$-($1\frac{1}{3}$+$4\frac{2}{3}$)
=$9\frac{4}{11}$-6
=3$\frac{4}{11}$;
(2)$\frac{2}{3}$×$\frac{4}{15}$+$\frac{2}{3}$×$\frac{11}{15}$
=$\frac{2}{3}$×($\frac{4}{15}$+$\frac{11}{15}$)
=$\frac{2}{3}$×1
=$\frac{2}{3}$;
(3)(5.52÷0.6-8.6)×1.5
=(9.2-8.6)×1.5
=0.6×1.5
=0.9;
(4)$\frac{3}{4}$-$\frac{2}{3}$×($\frac{5}{8}$-$\frac{1}{2}$)
=$\frac{3}{4}$-$\frac{2}{3}$×$\frac{1}{8}$
=$\frac{3}{4}$-$\frac{1}{12}$
=$\frac{2}{3}$;
(5)($6\frac{1}{2}$-$5\frac{3}{10}$)×(7-$4\frac{1}{3}$)
=1$\frac{1}{5}$×2$\frac{2}{3}$
=$\frac{16}{5}$;
(6)87×93-6801
=8091-6801
=1290;
(7)$\frac{1}{5}$÷[($\frac{1}{6}$+$\frac{5}{18}$)×$\frac{3}{5}$]
=$\frac{1}{5}$÷[$\frac{4}{9}$×$\frac{3}{5}$]
=$\frac{1}{5}$÷$\frac{4}{15}$
=$\frac{3}{4}$;
(8)17×[($1\frac{1}{3}$+1.5)÷$1\frac{1}{4}$]
=17×[2$\frac{5}{6}$÷$1\frac{1}{4}$]
=17×$\frac{34}{15}$
=$\frac{578}{15}$.
点评 考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.
| A. | 5厘米 | B. | 15厘米 | C. | 20厘米 | D. | 45厘米 |
| 48×12.5%= | $\frac{2}{3}-\frac{3}{5}$= | 8×99= | 15-15×$\frac{1}{3}$= |
| 1.9-0.3×3= | 5÷$\frac{5}{7}-\frac{5}{7}$÷5= | 19+99= | $\frac{3}{4}÷\frac{1}{6}$+0.75×8= |