题目内容

两条直线最多有1个交点,三条直线最多有3个交点,五条直线最多有
10
10
个交点.
分析:因为2条直线最多的交点个数为1,3条直线最多的交点个数为1+2=3,4条直线最多的交点个数为1+2+3=6,5条直线最多的交点个数为1+2+3+4=10,
解答:解:2条直线最多的交点个数为1,
3条直线最多的交点个数为1+2=3,
4条直线最多的交点个数为1+2+3=6,
5条直线最多的交点个数为1+2+3+4=10,
答:五条直线最多有10个交点.
故答案为:10.
点评:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况;即n条直线最多的交点个数为1+2+3+4+…+n-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网