题目内容
①2008×2010×(
+
)
②2000×20102010-2010×20002000
③
×
+
×
④1×2+2×3+3×4+4×5+…+18×19+19×20.
| 1 |
| 2008×2009 |
| 1 |
| 2009×2010 |
②2000×20102010-2010×20002000
③
| 9 |
| 15 |
| 14 |
| 17 |
| 8 |
| 17 |
| 14 |
| 15 |
④1×2+2×3+3×4+4×5+…+18×19+19×20.
分析:①可根据乘法分配律计算;
②可将20102010拆分为2010×10001,20002000拆分为2000×10001后根据乘法分配律计算;
③可根据乘法交换律及分配律计算;
④由于原式=12+1+22+2+32+3+…+192+19=12+22+32+…+192+1+2+…+19,由此可根据平方和公式12++22+32+…n2=n(n+1)(2n+1)÷6及高斯求和公式(首项+末项)×项数÷2计算.
②可将20102010拆分为2010×10001,20002000拆分为2000×10001后根据乘法分配律计算;
③可根据乘法交换律及分配律计算;
④由于原式=12+1+22+2+32+3+…+192+19=12+22+32+…+192+1+2+…+19,由此可根据平方和公式12++22+32+…n2=n(n+1)(2n+1)÷6及高斯求和公式(首项+末项)×项数÷2计算.
解答:解:①2008×2010×(
+
)
=2008×2010×
+2008×2010×
,
=
+
,
=
,
=2.
②2000×20102010-2010×20002000
=2000×2010×10001-2010×2000×10001,
=0;
③
×
+
×
=
×
+
×14(
×8),
=
×
+
×
,
=(
+
)×
,
=
×
,
=
;
④1×2+2×3+3×4+4×5+…+18×19+19×20
=12+1+22+2+32+3+…+192+19
=12+22+32+…+192+1+2+…+19,
=19×(19+1)×(19×2+1)÷6+(19+1)×19÷2,
=19×20×39÷6+20×19÷2,
=2470+190,
=2660.
| 1 |
| 2008×2009 |
| 1 |
| 2009×2010 |
=2008×2010×
| 1 |
| 2008×2009 |
| 1 |
| 2009×2010 |
=
| 2010 |
| 2009 |
| 2008 |
| 2009 |
=
| 4018 |
| 2009 |
=2.
②2000×20102010-2010×20002000
=2000×2010×10001-2010×2000×10001,
=0;
③
| 9 |
| 15 |
| 14 |
| 17 |
| 8 |
| 17 |
| 14 |
| 15 |
=
| 9 |
| 15 |
| 14 |
| 17 |
| 1 |
| 17 |
| 1 |
| 15 |
=
| 9 |
| 15 |
| 4 |
| 17 |
| 14 |
| 17 |
| 8 |
| 15 |
=(
| 9 |
| 15 |
| 8 |
| 15 |
| 14 |
| 17 |
=
| 17 |
| 15 |
| 14 |
| 17 |
=
| 14 |
| 15 |
④1×2+2×3+3×4+4×5+…+18×19+19×20
=12+1+22+2+32+3+…+192+19
=12+22+32+…+192+1+2+…+19,
=19×(19+1)×(19×2+1)÷6+(19+1)×19÷2,
=19×20×39÷6+20×19÷2,
=2470+190,
=2660.
点评:完成此类题目的关键是在认真分析式中数据的基础上,发出式中数的内在联系与规律,从而找出合适的巧算方法.
练习册系列答案
相关题目