题目内容
1999+9992
+
+
+…+
2008×20092009-2009×20082008
÷6+
×
5.58-
+5.42-
(2890+
+
+
)÷(
+
+
)
3333×3333+9999×8889
若2!=2×3,3!=3×4×5,5!=5×6×7×8×9.按此规则计算
.
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 132 |
2008×20092009-2009×20082008
| 9 |
| 20 |
| 1 |
| 20 |
| 1 |
| 6 |
5.58-
| 3 |
| 5 |
| 2 |
| 5 |
(2890+
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
3333×3333+9999×8889
| 2005+2006×2004 |
| 2005×2006-1 |
若2!=2×3,3!=3×4×5,5!=5×6×7×8×9.按此规则计算
| 4! |
| 61! |
分析:(1)1999+9992,9992变成999×999,把其中的一个999变成1000-1,再利用乘法交换律和结合律简算;
(2)因为
=
-
,
=
-
,
=
-
.
=
-
,所以
+
+
+…+
=
-
+
-
+
-
+…+
-
;
(3)把2008×20092009变成2008×2009×10001,2009×20082008变成2009×2008×10001再利用乘法的分配律计算;
(4)把
÷6变成
×
,再利用乘法的分配律计算;
(5)5.58-
+5.42-
,利用加法的交换律结合律和一个数连续减去两个数等于这个数减去这两个数的和计算简便;
(6)(2890+
+
+
)÷(
+
+
)变成[2890+(
+
+
)]÷(
+
+
),变成2890÷(
+
+
)+(
+
+
)÷(
+
+
);
(7)3333×3333-9999×8889变成9999×1111-9999×8889再利用乘法的分配律计算简便;
(8)分母2005×2006-1=2005×(2005+1)-1=2005×2005+2005-1=2005×2005+2004,分子2005+2006×2004=2005+(2005+1)×2004=2005+2005×2004+2004=2005×(3004+1)+2004=2005×2005+2004;
(9)根据题目所给的从规则4!=4×5×6×7,6!=6×7×8×9×10×11,代入求出
..
(2)因为
| 1 |
| 20 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 30 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 42 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 132 |
| 1 |
| 11 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 132 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 11 |
| 1 |
| 12 |
(3)把2008×20092009变成2008×2009×10001,2009×20082008变成2009×2008×10001再利用乘法的分配律计算;
(4)把
| 9 |
| 20 |
| 9 |
| 20 |
| 1 |
| 6 |
(5)5.58-
| 3 |
| 5 |
| 2 |
| 5 |
(6)(2890+
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
(7)3333×3333-9999×8889变成9999×1111-9999×8889再利用乘法的分配律计算简便;
(8)分母2005×2006-1=2005×(2005+1)-1=2005×2005+2005-1=2005×2005+2004,分子2005+2006×2004=2005+(2005+1)×2004=2005+2005×2004+2004=2005×(3004+1)+2004=2005×2005+2004;
(9)根据题目所给的从规则4!=4×5×6×7,6!=6×7×8×9×10×11,代入求出
| 4! |
| 6! |
解答:解:(1)1999+9992,
=1999+999×999,
=1999+(1000-1)×999,
=1999+999000-999,
=(1999-999)+999000,
=1000+999000,
=1000000;
(2)
+
+
+…+
,
=
-
+
-
+
-
+…+
-
,
=
;
(3)2008×20092009-2009×20082008,
=2008×(2009×10001)-2009×(2008×10001)
=2008×10001×(2009-2009),
=2008×10001×0,
=0;
(4)
÷6+
×
,
=
×
+
×
,
=(
+
)×
,
=
×
,
=
;
(5)5.58-
+5.42-
,
=(5.58+5.42)-(
+
),
=11-1,
=10;
(6)(2890+
+
+
)÷(
+
+
),
=[2890+(
+
+
)]÷(
+
+
),
=2890÷(
+
+
)+(
+
+
)÷(
+
+
),
=2890×
+1,
=1200+1,
=1201;
(7)3333×3333+9999×8889
=9×1111×1111+9999×8889,
=9999×1111+9999×8889,
=9999×(1111+8889),
=9999×10000,
=99990000;
(8)
,
=
,
=
,
=
,
=1;
(9)因为2!=2×3,3!=3×4×5,5!=5×6×7×8×9,
所以4!=4×5×6×7=840 6!=6×7×8×9×10×11,
所以
=
=
.
=1999+999×999,
=1999+(1000-1)×999,
=1999+999000-999,
=(1999-999)+999000,
=1000+999000,
=1000000;
(2)
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| 132 |
=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 11 |
| 1 |
| 12 |
=
| 1 |
| 6 |
(3)2008×20092009-2009×20082008,
=2008×(2009×10001)-2009×(2008×10001)
=2008×10001×(2009-2009),
=2008×10001×0,
=0;
(4)
| 9 |
| 20 |
| 1 |
| 20 |
| 1 |
| 6 |
=
| 9 |
| 20 |
| 1 |
| 6 |
| 1 |
| 20 |
| 1 |
| 6 |
=(
| 9 |
| 20 |
| 1 |
| 20 |
| 1 |
| 6 |
=
| 1 |
| 2 |
| 1 |
| 6 |
=
| 1 |
| 12 |
(5)5.58-
| 3 |
| 5 |
| 2 |
| 5 |
=(5.58+5.42)-(
| 3 |
| 5 |
| 2 |
| 5 |
=11-1,
=10;
(6)(2890+
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
=[2890+(
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
=2890÷(
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
| 5 |
| 6 |
| 7 |
| 8 |
| 7 |
| 10 |
=2890×
| 120 |
| 289 |
=1200+1,
=1201;
(7)3333×3333+9999×8889
=9×1111×1111+9999×8889,
=9999×1111+9999×8889,
=9999×(1111+8889),
=9999×10000,
=99990000;
(8)
| 2005+2006×2004 |
| 2005×2006-1 |
=
| 2005+(2005+1)×2004 |
| 2005×(2005+1)-1 |
=
| 2005+2005×2004+2004 |
| 2005×2005+2005-1 |
=
| 2005×2005+2004 |
| 2005×2005+2004 |
=1;
(9)因为2!=2×3,3!=3×4×5,5!=5×6×7×8×9,
所以4!=4×5×6×7=840 6!=6×7×8×9×10×11,
所以
| 4! |
| 6! |
| 4×5×6×7 |
| 6×7×8×9×10×11 |
| 1 |
| 396 |
点评:此题考查整数小数分数的四则混合运算,根据算是的特点灵活选用简便方法进行计算.
练习册系列答案
相关题目